Canadian Electrical Industry News Week

 

March 9, 2018

Intelligent Lighting ControlsSteve Mesh

Room-based lighting control systems have been on the market for some time now. You might think of these as the younger cousins to larger building-wide or even enterprise-wide lighting control systems. However, that’s not an entirely appropriate comparison. For starters, what constitutes a “room-based” control system? That is an increasingly complicated question because the lines between system types are becoming more blurred as time goes on.

Typically, room-based controls have a central control module (“controller”). In lighting control system parlance, a “controller” is a device that contains a relay(s) to switch loads ON and OFF as well as output for sending dimming signals to fixtures. This is usually a 0-10V signal, although some controllers are designed to talk to DALI drivers and ballasts instead. Some controllers use other protocols, such as DMX. However, by far the most prevalent signal type used by architectural lighting control systems is 0-10V. One reason for this is that most LED fixtures have drivers that accept 0-10V wires for dimming control, and LED fixtures are becoming the light source of choice at an astonishingly accelerated rate. In fact, some states actually require that all LED fixtures are dimmable (i.e., California, which requires full-range dimming capability in the range of 10-100% for any LED fixture).

One vendor’s configuration for a popular room-based controller is a module that accommodates 20 amps of load. In other words, you can rout an entire 20-amp branch through this module. It contains 3 relays as well as 3 pairs of terminals for dimming signal output using 0-10V analog signals (one per relay). Therefore, effectively you can control fixtures in three “zones” (one relay and one pair of 0-10 output terminals per zone).

In many small spaces, this may be perfectly adequate. You could theoretically rout up to 20 amps (minus safety reserve) to any individual zone, but the more common usage would be to split the load between the three zones. For example, in a 30' x 30' classroom with three rows of fixtures parallel to the window wall, it would make sense for each row to be in its own zone. In fact, most energy codes require this anyway, since the row closest to the window wall is probably in the “primary daylight” zone and the next row is probably in the “secondary daylight” zone.

Most codes require fixtures in these zones to be controlled separately from each other, and from any other zones/fixtures in the space. Additionally, most codes now require that fixtures in these daylight zones automatically dim based on input from one or more photosensors. You can see how a control module that contains 3 relays and 3 pairs of terminals for 0-10V output can provide the code-required zoning in a small space. If the primary input to the fixtures is 277V, then one 20-amp control module will likely be adequate for relatively small, contained spaces.

In order to provide the functionality that is appropriate for most spaces, and to comply with code requirements, any lighting control “system” — even if it is limited in scope (i.e. a room-based system) — must allow for the use of sensors and switches. Many spaces must specifically use occupancy sensors to comply with automatic shutoff requirements. As previously indicated, many spaces also require that photosensors automatically dim fixtures in both the primary as well as secondary daylight zones. Most codes also require that local “area” switches are installed that allow for the “manual override” of the fixtures. In certain spaces, the owner might want more sophisticated local switches. For example, a “scene selector” switch with multiple buttons might recall specific light levels in a conference room or classroom (i.e. 100%/75%/50%/25%/full OFF).

Each vendor of room-based lighting controls makes most or all of these products for use with their system. Some make a variety of products in each category. For example, a given vendor may offer closed-loop as well as open-loop photosensors, or PIR vs. ultrasonic occupancy sensors (or even “dual-technology”). Obviously, if your project requires a specific type of occupancy sensor, photosensor or switch, it’s imperative that you confirm that a given vendor makes that type of product. Since sensors and switches use very little energy, room-based systems typically connect these peripheral devices to the centralized control module with Ethernet or other low-voltage cable. Therefore, this requires a separate run(s) from the wires that supply line-voltage power (plus low-voltage wires for the dimming signal) to the light fixtures.

What are the benefits of using a room-based lighting control system? For small spaces, the cost will be on the low side of the spectrum. If all you need is a system that can control up to 20 amps of load, split into three zones, then the control module as previously described should be more than adequate for the job. Another benefit to using a room-based lighting control system is that the wiring is relatively “normal.” What does “normal” mean in this context? It means that electricians are used to creating groups of fixtures in switch legs or entire branches based on line-voltage wiring. Keep in mind that if a control module has only 3 relays for output to turn fixtures on/off, then it’s only possible to distribute fixtures on the system among 3 zones (switch legs).

Historically, these room-based systems leave out certain functionality normally associated with larger building-wide or enterprise-wide control systems. For example, not all of these room-based systems have a scheduling feature. If the space in question contains occupancy sensors, then the “automatic shutoff” code requirement will probably be covered anyway. Typically, there is no easy way for these systems to take an ADR (automated demand response) signal and tell fixtures to dim accordingly during a period of peak load. That would require connectivity that these systems do not typically have. Similarly, recording or even just displaying energy use data may not be possible if the system has no method of connecting to other equipment or computer networks. However, by paring down the complexity of the equipment and associated software, vendors have created room-based systems that may seem much more straightforward to wire and commission to most electricians – and will likely be the lower-cost option for installing lighting controls in a given space.

What are some potential drawbacks to using a room-based control system? If the amount of load in the space exceeds the limitation of a given control module, then additional control modules would have to be used. Similarly, what happens if you require more zones of control than the system allows (i.e., more than the 3 that is used by the module previously described)? If the module has 3 relays, then there is no way to split the fixtures into 4 or more zones. What would happen if, at some future date, the space needs to be reconfigured and existing zones of fixtures need to be split? If you are already using the maximum number of zones based on that control module, then you would be forced to buy a new control module to get additional zones of control.

The native software in a given room-based control system may lack certain functionality, as previously mentioned. If you don’t need any of the functions that were left out of the software, go for it. However, if you commit to using a building- or enterprise-wide type of lighting control system, the likelihood is that you’ll have all the functionality you could possibly need. This may very well include functions such as scheduling, energy reporting, and demand response. Keep in mind that some of these may be required by code. So if you plan to use a room-based system, you really have to make sure that a system you purchase and install will meet the needs of the space as well as any current code requirements.

It should also be noted that some room-based lighting control systems use “remote controllers” (such as infrared remotes similar to those used for TV) to commission, program or reprogram the system. What happens if you lose the remote? Or don’t know how to use it in the first place? Will you have to pay the vendor to come and program the system for you? If so, this may reduce the financial advantage of using a seemingly “simpler” system. The trend these days is for control system vendors to allow for commissioning, programming and reprogramming via more ubiquitous devices, i.e. cell phones, tablets, laptops, etc.

Many (if not all) larger building-wide lighting control systems allow for the use of fixture-integrated controllers. As such, every single fixture can essentially be in its own zone. If this is paired with the use of fixture-integrated sensors, then any desired zoning can be achieved – now or in the future. Zoning (as well as rezoning at any future date) is a simple matter of pulling specific fixtures into any given zone in the software. Most systems that make use of fixture-integrated sensors have features in the software that allow for “grouping.” For example, in a conference room, the occupancy sensors in all fixtures may be in a single “motion group,” so that if just one of the sensors picks up a person entering the room, all fixtures will go on.

These trends among lighting control system vendors are very strong, particularly the use of fixture-integrated controllers and sensors, as well as much more simplified software that most neophytes can program with their cell phone. Since these systems typically come packed with full functionality in terms of what you can do with them, you clearly can’t go wrong if you opt for using building- or enterprise-wide lighting control equipment. If the financials pencil out, then how would you justify using a more limited system with restrictive zoning instead of a more fully-featured system?

Lastly, as previously stated, the lines that separate room-based lighting control systems from their larger building- or enterprise-wide cousins are becoming very blurred. For example, one vendor of a very popular room-based system resisted the development of fixture-integrated controllers as well as the development of wireless products. After evaluating trends in the market, they decided to augment their product line and now offer individual fixture controllers as well as wireless products. One issue that may have affected their decision to create individual fixture controllers is that this is a requirement in order to get onto the DLC Qualified Products List. As of now, this system is in fact on the DLC’s QPL.

Other products that augment the base equipment for a room-based system also help to blur the lines. For example, some systems now allow you to connect separate room-based control modules via routers, gateways, network bridges, etc. If these are ultimately connected to a centralized server, then you may end up with something that is more or less a building- or enterprise-wide lighting control system. Just make sure to check that this won’t require an inordinately complex array of components to turn a system that was conceived for use in an individual space into one that can handle the needs of an entire floor, building or campus.

Published with the permission of Lighting Control Association.

Steven Mesh is an award-winning lighting designer who has designed lighting and control systems for a variety of project types (commercial, museums, schools, residential, restaurants, retail, historic, healthcare, etc.). As an educator, he has taught classes and given presentations about lighting and controls across North America and internationally. One of his is developing lighting and lighting controls courses that rely on hands-on and/or interactive content. He has been a repeat speaker at LightFair for many years.

 

Changing Scene

  • Prev
  Malcolm Bird, General Manager of Fusetek, and Frank Dunnigan, CEO of Techspan Industries, ...
  EiKO, a manufacturer and distributor of premium lighting products, is expanding its ...
  The new CSA C83-17 offers utilities a comprehensive list of components, with critical ...
  Schneider Electric Canada has just launched Go Green in the City 2018, its global ...
  A new report published by Philips Lighting and SmartCitiesWorld highlights drivers and ...
This ongoing study provides industry with information on the most up-to-date issues and statistics ...

 Electrician Forum Brought to You by Schneider Electric             

The Electrician Forum is a monthly column that provides valuable information to electricians and electrical contractors on current industry trends and concerns. 

Schneider ElectricSponsored by Schneider Electric

In this issue: 

Quite simply put if you feel that job site costing and quote development are a lot of work, you are right! To properly assess a job and estimate the required work time, product costs and various other expenses can take more time than is often feasible for a small company. You need to be spending your time completing projects, which can become difficult if you are spending your hours doing cost analysis. We learned this first hand in last month’s edition of the Electrician Forum when Steve Beeby of Beehive Electric discussed the balance required to own and operate an electrical contracting company.

read more...

Watch a portion of the interview conducted by Electrical Industry Canada with Steve Beeby of Beehive Electric

 

Codes and Regulations Brought to You by the CSA Group

  • Prev
In this article: Section 58 — Passenger Ropeways and Similar Equipment. Rule 58-000 ...
  Unauthorized CSA Group certification marks have been found on wiring by Triumph Cable ...
In this article: Section 52 — Diagnostic imaging installations. The CE code is a ...
In this article: Section 46 — Emergency Power Supply, Unit Equipment, Exit Signs, and ...
  In this article: Section 44 — Theatre Installations. The CE Code is a ...
CSA has published C22.2 No. 60947-7-3, the harmonized standard for low-voltage switchgear and ...
  Electric welders. The CE Code is a comprehensive document. Sometimes it can seem ...
  In this article: Section 40 — Electric cranes and hoists. The CE Code is a ...

Fluke Hammon Healy

As our population grows and consumers continue to rely on technology for both essentials and comfort, the need for power quality has become vital. Fluke is a leader in this field, offering power quality training seminars, as well as employing power quality specialists with years of industry experience.

This month’s personal profile is a double feature of two of Fluke’s senior power quality specialists, Hilton Hammond and Frank Healy.

Hilton Hammond has been with Fluke since 1995, and in 2013 moved into his current position as Power Quality Business Unit Manager. He has a deep and thorough knowledge of power quality and related electrical instrumentation. 

Frank Healy, Power Quality Product Marketing Manager at Fluke since 2006, has been in the industry for well over three decades. He globally manages Fluke’s power quality products, including measuring instruments and precision power analyzers.

Read More



Tools for the Trade

  • Prev
  IDEAL Industries has introduced Combination Drill Taps to its tool lineup. Combining the ...
  Stripping and crimping device, 100 - 240 V input voltage, for insulated ferrules with a ...
Professional all-in-one cutter/stripper for coaxial and twisted pair cables     ...
  Klein Tools' Coax Explorrer 2 tests coaxial cable and maps up to 4 locations   ...
  Ideal Industries' T-14 wire stripper s are ideal for all professionals working within the ...
  The ATS850 conveyor eliminates all types of electro static discharge requirements. ...
  Lorik Tool & Automation has the experience and ability to manufacture a variety of ...
  Ideal Industries' 26 piece insulated Journeyman kit is ideal for new electricians or for ...
  Klein Tools Deluxe Fish Rod Set comes in 19 pieces that when assembled can fish wire and ...
  BendWorks Software was designed to help electrical contractors adopt this new process ...

Product News

  • Prev
  Emergency stop, light grid or safety door – the PSRmini and PSRclassic safety ...
  Brady's B-555 Aluminum Safety Sign is an aluminum sign panel, with protected graphics. ...
  Greenlee offers 8 styles of ANSI compliant eyewear to meet the varied needs and ...
    Ideal Industries non-conductive S-Class Fiberglass Fish Tape is designed ...
  Archilume releases its new LED luminaire, Balance. Drawing inspiration from the Bauhaus ...
  Archilume’s new LED luminaire offers a new Dim to Warm feature enhancing the ...
  Inspired by minimalist shapes condensed to their most basic yet visually strong essential ...
  As buildings become increasingly more connected through the Internet of Things (IoT), ...
  The EVHC series from Dual-Lite is a high lumen output emergency lighting unit designed ...
  The LED Low Voltage Down Light (LV-DL series) utilizes high brightness Epistar COB (Chip ...

 

Peers & Profiles

  • Prev
David Johns is a unique and dedicated individual both at home and in the workplace. At home he is a ...
    Sean Freeman is a vibrant, enthusiastic and selfless individual who has taken his ...
  Automation companies are drivers of innovation, and have penetrated near every industry ...
Total Electrical Solutions was founded in 2013 by Jeremy Herrington in Quispamsis, on the outskirts ...
Andrew MacLeod is a territory sales manager with Leviton Manufacturing of Canada in British ...
  Floyd Lau founded Amptek Technologies in 2002 as an end to end engineering design ...
Mike Marsh, President and CEO of SaskPower, has been a leading figure in Saskatchewan’s ...
Gordon MacDonald is a cheerful, driven individual who loves to be challenged, a trait that suits ...
  Most of us have a difficult enough time managing one job and a home life. However, some ...
  Since 2012 Barnstormer has advanced the abilities of their brewery with the installation ...

Copper $US Dollar price per pound

 Sean Freeman

Sean Freeman is a vibrant, enthusiastic and selfless individual who has taken his trade expertise beyond that of a simple career. Not only is he a Master Electrician but he has traveled around the world as an electrical technician delegate with the Red Cross Emergency Response Unit. His skills are a vital part of emergency response and disaster relief.

In 2013 Sean responded to Typhoon Haiyan in the Philippines. In 2014 Sean spent almost a month in Kenema, Sierra Leone working at the Ebola Treatment Centre. There he was responsible for ensuring electricity and clean water were available, and worked to strengthen the infrastructure of the facility. 

read more

Kerrwil Publications

538 Elizabeth Street, Midland,Ontario, Canada L4R2A3 +1 705 527 7666
2016 All rights reserved

Use of this Site constitutes acceptance of our Privacy Policy (effective 1.1.2016)
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of Kerrwil